
N94- 28255

ADVANCED END-TO-END SIMULATION FOR

ON-BOARD PROCESSING

(AESOP)

Alan S. Mazer

Jet Propulsion Laboratory,CaliforniaInstituteof Technology

4800 Oak Grove Drive,Pasadena, California 91109

4/

1. Introduction

Developers of data compression algorithms typically use their own software together with

commercial packages to implement, evaluate and demonstrate their work. While convenient

for an individual developer, this approach makes it difficult to build on or use another's work

without intimate knowledge of each component. When several people or groups work on

different parts of the same problem, the larger view can be lost. What's needed is a simple

piece of software to stand in the gap and link together the efforts of different people, enabling

them to build on each other's work, and providing a base for engineers and scientists to

evaluate the parts as a cohesive whole and make design decisions.

AESOP (Advanced End-to-end Simulation for On-board Processing) attempts to meet this

need by providing a graphical interface to a developer-selected set of algorithms, interfacing

with compiled code and standalone programs, as well as procedures written in the IDL and

PV-Wave command languages. As a proof of concept, AESOP is outfitted with several data

compression algorithms integrating previous work on different processors (AT&T DSP32C, TI

TMS320C30, SPARC). The user can specify at run-time the processor on which individual

parts of the compression should run. Compressed data is then fed through simulated transmis-

sion and uncompression to evaluate the effects of compression parameters, noise and error

correction algorithms.

The following sections describe AESOP in detail. Section 2 describes fundame_atal goals

for Usability. Section 3 describes the implementation. Sections 4 through 5 describe how to

add new functionality to the system and present the existing data compression algorithms.

Sections 6 and 7 discuss portability and future work.

o

.

,

Design Goals

A few goals are centralto the design of AESOP. AESOP must:

Be usable enough that scientists and system designers can ezperiment with their data with

little insaaaction. There must be clear visual feedback as applications execute. The user

must be able to easily display algorithm data using a varlet) of display types.

Be easy to augment. It should be easy to integrate executab!es for which source is unavail-

able, as well as code written in compiled languages such as C and FORTRAN. Non-

programmers should be able to use a high-level interpreted language to add capabilities.

31

.

,

,

Rely on outsidedevelopment when such iscommonly and cheaply available.Itshould pro-

vide for the integrationof commercial packages as much as possible.

Isolate itself from applications; changes to AESOP must not require that applications be
rebuilt or otherwise modified.

Provide complete error handing. AESOP must be prepared to handle internal errors, user

errors and errors in applications, in a useful way, preserving the current state and provid-

ing the user options as much as possible.

6. Coexist well with other executing software. It should be efficient and flexible in use of

seroen space and other system resources.

7. Be user-customizable in look. The user should be able to choose cosmetic features such as

user interface colors, as well as operational defaults, such as which types of displays are

automatically enabled.

3. Implementation

The AESOP implementation assumes two simple concepts: modules, compiled or interpret-

able code which performs specific computations, and algorithms, module sequences used to

implement complete applications. The following sections describe these two concepts in more

detail, and then show how they provide a basis for the complete system.

3.1. Modules and Algorithms

Each AESOP module, compiled or interpreted, has a usage type and some number of input

and output arguments. Input modules are used to read in files from disk or bring other data

into the system which the user can't practically enter from the keyboard. Compute modules

perform computational tasks. Output modules are selected at run-time by the user and per-

form data display. Arguments also have usage types. An input argument is one read by the

module; an output argument is a value or data item that the module generates. Update argu-

ments are both read and modified by the module. Each argument also has a data type, as

summarized in Table 1.

Table 1 - AF__OP data types

char char id char 2d

short short id "short 2d

int int Id int 2d

Noat Noa.t Id Hoat 2d

double double id double 2d

string string_Id string_2d

kwd kwd id kwd 2d

32

An AESOP algorithm is a sequence of compute modules where the inputs for each module

are taken either from the user or from the output of a previous compute module. Algorithms

are typically a mixture of compiled and interpreted modules.

3.2. The Dictionary Interface

Figure 1 shows an overview of AESOP implementation. Sections 3.2 through through 3.4

will discuss the major components, beginning with the dictionary interface and continuing

with code execution and the GUI.

Dictionaries are ASCII files listing available modules (compiled routines, binary execut-

ables, interpretable procedures) and algorithms (module sequences designed to perform com-

mon tasks). AESOP looks for one standard dictionary, "stdlib.dict", to contain generally use-

ful routines for output display, local file formats, etc. Users may define any number of other

dictionaries to describe modules and algorithms in specific application areas. __AESOP looks

for dictionaries in the local directory, with the AESOP executable, and in other directories

specified by the user using the AESOP APPL DIRS environment variable. Dictionaries can

be reread without leaving AESOP to g_n access to newly-defined or modified algorithms and

modules. Dictionaries can also contain graphics directives specifying how an algorithm is

displayed on the screen, including labels and boxes. Dictionary enlries have se_veral formats

depending on whether they are defining a compiled module, an interpreted PV-Wave module

or an algorithm.

Entries for compiled modules have the form:

moduletype name:label:pathname

PV-Wave modules are defined similarly, but with the module inputs and default values fol-

lowing the pathname. Entries for interpreted PV-Wave modules have the form:

module_type name:label:pathname:

arg_use_type t arg_data_typel arg_labell[=default],

arg_use_type2 arg_data_type2 arg label2[--default]

arg_use_typ% arg_data type_ arg_label,[=default]

The first line of the entry is similar to the entry for the compiled-module. Subsequent lines

list parameters, separated by commas, where each parameter has a use type, data type and

prompt. Initial values may be specified by following the prompt with an equal sign (=) and

the value. Scalars are considered user options automatically; higher-dimensioned parameters

are retrieved from previously-executing modules. Type conversions are implicit.

Dictionary entries for algorithms have the basic form:

algorithm name:label:module1 module2 ... modul%

Extensions to this basic syntax allow the user to group modules in labeled boxes and to lay

these boxes in any direction.

33

_ _.=_'_5 .I
_ _ ...c"_"_ I

=_ c o.)o _ r_ t

_000(DOI
=_l ,,-. cO .,_, .'_. 0 I-- _°=-_>,!
_ =E__'! _ S_

- " _.! "7
-O _ a).9 ----

O OO _o_- =_51 _o -=_ "_
"_ _'woa-_. I I o._, o_ o°E
o <_/ _.=o _-

•
0

34

3.3. The Code Execution Interface

AESOP provides access to two different types of modules: interpreted modules written in

the PV-Wave command language and compiled modules written in C or another high-level

language. Both types of modules have "glue functions" which are called by AESOP and call

the module code in turn. This approach isolates the details of executing application code

from AESOP internals.

In the ease of compiled code, glue functions are programmer-written and allow AESOP to

call executables for which source code is unavailable, as well as routines written in languages

other than C. The glue function, written in C, creates local storage for use by the function

and defines parameters in a manner AESOP can understand. AESOP calls these glue func-

tions using dynamic loading, further isolating application routines from AESOP itself. The

parameter definition interface is simple, using keywords and program-callable functions for

optional capabilities, allowing the interface to be extended in the future without requiring

modification of currently-integrated code. Glue functions for compiled modules take a single

argument, an initialization flag. When an algorithm is selected, AESOP calls the glue func-

tion for each compiled module in the algorithm with the initialization flag set to 1. At this

time each module uses the AESOP de f () function to describe its parameters where de f ()

is defined:

def(char *prompt, enumuse_type use, enum data_type type,

void *local_addr, char *kwds[], int num kwds, int optionl,

int option2, ..., O)

The glue function will be called a second time, with the initialization flag 0, when the module

is actually executed. The kwd data types provide a simple way to restrict the user's choice of

values. Glue functions can indicate an error in either their initialization or execution parts by

returning -1, causing AESOP to stop algorithm execution with that module.

For PV-Wave modules, a generic glue function is supplied by AESOP. Since PV-Wave

modules have their parameters defined in the dictionary, their glue function need only be

called at execution time, when it creates temporary files needed to communicate with PV-

Wave, instructs PV-Wave to read necessary data, and invokes the PV-Wave procedure.

Module parameters listed in the dictionary and valued by the user before the run are passed in

as arguments to the procedure. The AESOP-Wave interface uses temporary files and PV-

Wave's cwavec () facility. The AESOP-Wave interaction is transparent to the developer
and user.

When an algorithm is loaded, AESOP automatically matches up non-user-specifiable

parameters. It does this by comparing the names of module outputs with the names of inputs

from subsequent modules and assigning to each possible matchup a score. This scheme will

probably need to be refined in the future. At the moment, close attention must be given to an

algorithm in development to make sure AESOP is attaching inputs to outputs as expected.

AESOP uses dimensionality and data type to reduce the potential for error. Nevertheless,

simple generic names are best, for example, "output image" rather than "decompression out-

put". In the latter case, a subsequent module expecting "input image" might get connected up

with some other "image" in the system, rather than the more ambiguous "decompression out-

put". Once all the connections have been made, AESOP uses the PV-Wave or dynamic load-

ing interface as necessary to execute each module in turn. AESOP ensures before each

35

module is executedthat the inputs to the moduleare available,either becausethe userexpli-
citly specified them or becausethey were generatedby a previousmodule in the algorithm.
Signalhandlersare installed to catchmemoryusageerrorsin applications. If AESOPdetects
such an error it stopsexecutionof the module, restoring itself to its statebefore execution
started.

3.4. The GUI

The usability goals described in Section 2 are met in part by a graphical interface. Most

user interactions can be done with the mouse. The current status of the system is graphically

displayed. Options prohibited in a specific context are hidden until needed to avoid confu-

sion. The implementation is divided into 5 general parts: graph drawing, error messages,

application output catching, application parameter valuing and display control.

The graph drawing section presents algorithms selected as dataflow diagrams. Graph draw-

ing is done using X11/Motif, with application modules represented by boxes and connected

with arrows in a single-stream pipeline. Modules may be grouped and groups labeled.

Groups may be oriented in any direction, clearly distinguishing different parts of an algorithm.

Grouping, labeling and orientation are optional and taken from the algorithm specification in

the dictionary. When algorithms execute, module boxes are highlighted to show progress.

Since for large algorithms the graph area may not be large enough to show all the modules,

the graph area scrolls itself to keep the currently executing module visible.

The error messages section alerts the user to AESOP-discovered error conditions using

popup windows. AESOP detects 39 different error conditions, including fatal memory usage

errors in application modules. AESOP shows a popup window describing the condition and

then waits for user acknowledgement before continuing. Error messages printed by an appli-

cation module are also displayed in popup windows.

Non-error output from an application module is caught and optionally displayed in its own

window. When a module tries to send informational messages to the user, AESOP grabs that

output and, if the user has requested diagnostic output, displays it in a window created for that

purpose. Otherwise the output is discarded. AESOP can maintain a separate window for

each module, and switch between them as the different modules execute. This capability

allows the user to choose which parts and how much of the execution details to view, and

simplifies debugging during module development.

The application parameter valuing section allows the user to give values to optional and

required module parameters using popup windows. Both interpreted and compiled modules

may take parameters. The user specifies a value for a module parameter using the pulldown

menu attached to the module in the graph. AESOP lets the user enter scalar numerical quan-

tifies or choose items from lists using the keyboard. For larger parameters like input images

the user selects a module to use to read in the required data. Such modules are typically

defined in the standard library but are otherwise similar to application modules.

Finally, AF_OP allows the user to monitor module inputs and outputs using a variety of

display types. When AESOP starts it builds a list of all output modules listed in the dic-

tionaries. It then sorts the modules based on data type and the dimension of the primary

input(s), where a primary input is defined as an input such that no other input has a larger

number of dimensions. When the user requests display of a module input or output using a

36

module's menu, AESOP allows the user to select a parameter to display and then presents a

list of output modules suitable for displaying that particular type of value. Alternatively the

user can add a display using the Displays menu. AESOP allows the user to specify the

i :: _: ii dimensionaiity:0f the data and the type of _play-to create using the-menu, and then presents

a list of module parameters displayable with that type of output module. Since some display

_: :: modules will take inputs other than the data =to::diSl_Ia_y,:_OP prompts the user f0r-'-iieedeci

informationi:in the:_e of non-scalar inputs, it:bffers choices from among _e data-items
currently available in the system. These capabilities are provided automatically by AESOP

! and do' not depend on the algorithm writer. The Displays menu also allows users-to change

or remove displays. PV-Wave has been used to implement most of the current output
I' modules.

! i :::= . Figures 2 and 3show AESOP adding noise to a YPEG-compressed image and the resulting

,.i _ output with no error correction.
.. _-

!

4. Programming Environment

Adding functions or subroutines written in C, FORTRAN and other compiled languages

requires only writing the glue function and adding the name and object file pathname to a die-

-;, tionary. Glue funetions for compiled modules have two parts: the initialization part which

= defines parameters using AESOP's def () function, and an execution part to call the corn-

: piled function. Glue functions should return -1 on discovering a fatal error and 0 otherwise.

Error messages should be written to stderr and informational messages to stdout. The

- _ : dictionary entry for the DCT compute module declares the type of the module, its name, the

label to use on the graph, and the pathname of the glue-function object:

compute_module jpeg_dct :DCT :lib/rpc, so

i

|

The glue function must be compiled and linked with the functions it calls into an executable
with a ".so" extension. For SunOS one would use:

acc -c -pic glue_funcs, c

id-o library, so glue_funcs.o funcs to add.o

Generally useful functions should go into the standard library Cstdlib.dict"). Other functions

can be listed in application dictionaries. Once the module has been specified in one or the

other type of dictionary it's available for use.

Adding code from PV-Wave and other command-line-based packages is similar to adding

compiled code, except that parameters are declared in the dictionary rather than using a glue
function:

output_module flick2 :Alternate Two Images :flick2 .pro:

input u char 2d First Image, input u char 2d Second Image,

input int Iterations=20, input float Wait=0.3

Algorithms are added by simply defining them in the dictionaryas an ordered listof

module names:

37

Xmit

Figure 1 - AESOP execution of JPEG algorithm during downlink simulation

38

Figure2 -- Imageashypotheticallysentandreceivedwith randomsingle-bit
errors(30,000bit interval,nochannelcoding)

39

algorithm jpeg:JPEG:jpeg dct jpeg_quant jpeg_huff jpeg_decomp

The dictionary syntax allows the user to group modules in labeled boxes and to lay these

boxes in any direction. A _group is introduced using a vertical bar (I) followed immediately i

by the label for the group, a direction indicator (>, <, ^ or !), a list of space-separated modules !

forming the group, and the direction indicator again. The algorithm shown in Figure 2 was !

de_ine2t using: l

algorithm jpegendtoend :JPEG End-to-end:

ICompress>jpeg_dct jpeg quant jpeg_huff> " !:

iXmit !packet segment addnoise unsegment unpacket !

IDecompress<jpeg decomp< * - !
_ -- z

- I

I
5. Data Compression Applications [

Application development for AESOP so far has centered on data compression, but includes -:

simulation of flight-to-ground downlinks. Thus there are application modules not only for

various types of compression (JPEG, Rice, one- and two-dimensional wavelet compression) -

but also for packetization, segmentation, channel coding and noise simulation, providing a true

end-to-end view from in-flight data acquisition to the reception of transmitted data on the

ground. Supporting the end-to-end simulation of compressed data 1/_smission are a number __

of computational capabilities (packetization, segmentation and channel coding, and noise :_-

simulation) as well as output types. --

The packetization routine takes compression output and a set of packet lengths in bits, and i
breaks _eou{put into pac-ke_at the specified bit boundaries. Curremly:,_v_'iabIe length pack- |

ets are formed such that each packet holds 8 lines of compressed image dam. This approach [

simplifies recovery should an entire packet be lost since the location of a packet in an output .

image can be coded in the header, and the break is guaranteed not to occtu/in the middle of a o

pixel. An inverse procedure takes incoming packets and recombines them into a single bit
stream for deeompressionl :i - _ _ _- l,

Because channel coding requires fixed-length chunks of input data, -_packets_:.......are themselves

group-ed--inio-interieaVed segments ofur_orm length; segments are packed into frames. The |

interleave factor is an option with a default value-of 8. Segmentation currently uses Reed-
Solomon coding for optional error correction. The inverse procedure unencodes the data and |

restores the original input packets. Some diagnostic information (error counts, frame statis- • _

tics) is available using Show diagnostics on the module's menu.

A noise simulation module takes compressed, packetized, segmented data and flips bits on

a random interval. The user can specify the mean number of bits between errors, or turn off

noise simulation altogether. Better noise models are being developed.

In addition to many output modules in the standard library for reading, writing and display-

ing various data types, of special interest for data compression algorithms are "Showboth",

which allows a user to see two different images side by side, "Flick2", which alternates two

images rapidly in the same window using a user-chosen interval and number of iterations, and

"Imagediff', which displays the difference of two images using a user-chosen multiplication

factor. These are currently restricted to byte input images. Other modules compute signal-

40

to-noiseratios for most vector and image data types.

6. Portability

AESOP currently runs on Sun SPARCstations using SunOS 4.1.3 and Motif. While PV-

Wave is not required, support for it is built in and the current dictionaries use it for image

display. Operating system dependencies are minimal. AESOP is written in ANSI C. AESOP

uses dynamic loading to execute compiled modules, which is available on AIX 3.2, I-IPUX 8.0

and VMS 5.0 in addition to SunOS.

7. Future Work

The foundation is in place, but work remains to be done. AESOP currently relies heavily

on PV-Wave for output display; other packages need to be integrated for portability. More

output types, particularly for one-dimensional data, need to be implemented. Support for

application-defined data structures would be useful. Some applications may have trouble with

AESOP's redefinition of the C write () routine. Determination of graph connectivity will

eventually need enhancement. More control over output displays needs to be added.

8. Acknowledgements

The research described in this paper was performed by the Center for Space Microelectron-

ies Technology, Jet Propulsion Laboratory, California Institute of Technology, and was spon-

sored by the National Aeronautics and Space Administration, Office of Advanced Concepts

and Technology.

41

= :

